34 research outputs found

    Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs

    Get PDF
    The first, to our knowledge, passive, precision, self-alignment technique for direct coupling of vertical cavity surface emitting laser (VCSEL) and photodiode (PD) arrays to an array of polymer buried channel waveguides on a rigid printed circuit board (PCB) is reported. It gives insertion losses as good as the best achieved previously, to within experimental measurement accuracy, but without the need for costly active alignment nor waveguide facet polishing and so is a major step towards a commercially realizable low cost connector. Such an optical connector with four duplex channels each operating at 10 Gb/s (80 Gb/s aggregate) was designed, constructed, and its alignment precision assessed. The alignment technique is applicable to polymer waveguide interconnections on both rigid and flexible multilayer printed circuit boards (PCBs). The dependence of optical coupling loss on mis-alignments in x, y and z of the VCSEL and PD arrays allows the precision of alignment to be assessed and its reproducibility on multiple mating cycles of the connector is reported. The first recorded measurements of crosstalk between waveguides when the connector is misaligned are reported. Lateral misalignments of the connector to within its tolerance are shown to have no effect on the signal to crosstalk ratio (SCR), to within experimental measurement accuracy. The insertion loss repeatability is similar to that of single mode fiber mechanically transferable (MT) connectors

    The IeMRC Opto-PCB Flagship Project

    Get PDF

    Detection of coherent light in an incoherent background

    Get PDF
    The change in position of the self-coherence function minimum is used to detect the presence of a coherent source, rather than the change in strength of the self-coherence function at the reference path difference. The system uses both optical and digital signal processing with MATLAB algorithm. An experimental system was built in the visible band, employing a Michelson interferometer, an interference filter centered in the red, and a silicon photodetector. The results were averaged over up to 50 scans, depending on the relative visibility of the white light and laser fringes, to reduce the scan to scan variability. Amplifier gain was introduced to reduce quantization noise

    Acoustic Sensors to Measure Speed of Oil Flow in Downhole Pipes

    Get PDF
    This study was conducted to estimate the downhole speed of flow in oil wells and determined the flow direction by analyzing acoustic data recorded by fibre optic distributed acoustic sensors. The signals generated from acoustic data are in the time versus distance domain that are then normalized and differentiated with respect to distance. A 2D Fast Fourier Transform is used to convert time to frequency and distance to wave-number for subsequent calculation. A Gamma correction function was employed to enhance an intensity of the signal in the frequency wevenumber domain. Also, decaying function was successfully applied to enhance the signals with a very low frequencies. We developed a novel method called integration along the radius in polar coordinate to measure the speed of sound and calculating the speed of oil flow. We compared the performance of our method with a Radon transform and proved our method outperforms an existing methods in both processing time and accuracy. The data sets used in this study are recorded from real oil and gas pipes which means there is no controlled environment and there are lots of noisy signals as a result of unpredicted events under the sea. The result of this study is applicable in Oil and Gas production energy industry, Hydraulic fracturing and shale gas extraction energy industry, Borehole water supply industry, Gas pipeline transportation energy industry and Carbon Dioxide Sequestration industry

    Fluid Flow Velocity Measurement in Active Wells Using Using Fiber Optic Distributed Acoustic Sensors

    Get PDF
    Real time monitoring of the behaviour of fluids along the whole length of fluid filled well pipes is important to the oil and gas industry as it enables well operators to maximize oil and gas production and optimize the quality of oil and gas produced, whilst reducing the cost. Flow speed measurement is one of the key approaches in fluid flow monitoring in wells. In this paper, three methods are designed, developed and demonstrated to estimate the speed and direction of flow at a range of depths in real world oil, gas and water wells using acoustic data set from distributed acoustic sensors that attached to the wells. The developed methods are based on a new combination of several techniques from signal processing, machine learning and physics. The Terabyte size acoustic dataset are recorded from each well as a two-dimensional function of both distance along the pipeline and time. The aim of the developed methods is estimating flow speed at each point along over 3000 meters pipelines and increasing the accurately and efficiently of the flow speed calculation compared to the existing method. The methods developed in this paper are computationally inexpensive, which make them suitable for real time well monitoring

    The IPIN 2019 Indoor Localisation Competition - Description and Results

    Get PDF
    IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks

    FirstLight: Pluggable Optical Interconnect Technologies for Polymeric Electro-Optical Printed Circuit Boards in Data Centers

    Get PDF
    The protocol data rate governing data storage devices will increase to over 12 Gb/s by 2013 thereby imposing unmanageable cost and performance burdens on future digital data storage systems. The resulting performance bottleneck can be substantially reduced by conveying high-speed data optically instead of electronically. A novel active pluggable 82.5 Gb/s aggregate bit rate optical connector technology, the design and fabrication of a compact electro-optical printed circuit board to meet exacting specifications, and a method for low cost, high precision, passive optical assembly are presented. A demonstration platform was constructed to assess the viability of embedded electro-optical midplane technology in such systems including the first ever demonstration of a pluggable active optical waveguide printed circuit board connector. High-speed optical data transfer at 10.3125 Gb/s was demonstrated through a complex polymer waveguide interconnect layer embedded into a 262 mm × 240 mm × 4.3 mm electro-optical midplane. Bit error rates of less than 10-12 and optical losses as low as 6 dB were demonstrated through nine multimode polymer wave guides with an aggregate data bandwidth of 92.8125 Gb/s

    Deep Learning To Extract Features From Neonate Lung Images Using EIT Data

    Get PDF
    corecore